مقاله – ارائه راهکاری برای چالش های موجود در سیستم عامل های ابری

سرویس های ابر، پورتال های سلف سرویس دارند که به آسانی مدیریت می شوند.
دسترسی وسیع به شبکه
توانمندی های موجود بر روی شبکه، از طریق مکانیزم های استاندارد که استفاده از روش های ناهمگون پلتفرم های کلاینت، مانند تلفن های موبایل، لپ تاپ ها و PDA ها، را ترویج می کنند، قابل دسترسی هستند.
ائتلاف منابع
منابع محاسباتی فراهم کننده جمع آوری شده اند تا با به کارگیری مدل چند مشتری به چندین مشتری خدمت رسانی کنند. این کار به وسیله منابع فیزیکی یا مجازی مختلف که به شکلی پویا و بنابر درخواست مشتری واگذار و پس گرفته می شوند، صورت می گیرد. در اینجا حالتی از عدم وابستگی به مکان وجود دارد که در آن مشتری معمولاً کنترل یا دانشی درباره محل دقیق منابع فراهم شده ندارد ولی ممکن است در سطوح بالاتر انتزاعی بتواند محل را تعیین کند، مثل: کشور، استان یا مراکز داده. برای نمونه منابع شامل فضای ذخیره سازی، توان پردازشی، حافظه، پهنای باند شبکه و ماشین های مجازی می شود.
انعطاف پذیری سریع
می توان امکانات را به سرعت و با انعطاف، در بعضی موارد به صورت خودکار، به دست آورد تا به سرعت گسترش داده شده( از دید مقیاس) یا درجا آزاد شوند و خیلی سریع به مقیاس کوچکتری دست یابند. از دید مشتری امکاناتی که برای به دست آمدن در دسترس هستند اغلب نامحدود به نظر می آیند و می توانند به هر مقدار و در هر زمان خریداری شوند.
سرویس اندازه گیری شده
سیستم های ابری منابع را خودکار کنترل و بهینه می کنند. این کار با به کارگیری توانایی اندازه گیری در سطحی از تجرید که مناسب گونه آن خدمت ( مثل: فضای ذخیره سازی، توان پردازشی، پهنای باند و شمار کاربران فعال) است انجام می شود. میزان استفاده از منابع می تواند به شکلی شفاف هم برای مشتری و هم برای فراهم کننده زیر نظر گرفته، کنترل شده و گزارش داده شود.
معماری سرویس گرا[۱۵]
معماری مبتنی بر سرویس در واقع یک مجموعه ای از سرویس ها است که با یکدیگر ارتباط برقرار می کنند. حین این ارتباط ممکن است داده هایی را بین یکدیگر پاس کاری کنند و همچنین ترکیب دو یا چند سرویس با هم یک کار انجام دهد. در این جا چند مفهوم اتصال بین سرویس ها مورد نیاز است. برخلاف دهه های گذشته که نرم افزارها قائم به خود و انفرادی بودند، در حال حاضر روند تکامل نرم افزارها به سوی معماری مبتنی بر سرویس می رود. رشد انفجاری تکنولوژی های اینترنت و تعداد کاربران آن موجب شده که فروش نرم افزار جای خودش را به اجاره نرم افزار بدهد. شرکت های بزرگی مانند مایکروسافت، گوگل، سان و حتی آمازون به این سمت می روند که به جای فروش مستقیم نرم افزار به کاربر خدمات نرم افزاری را ارئه دهند. معماری مبتنی بر سرویس معماری نرم افزار یا سیستمی است که امکاناتی چون کامپوننت ها، استفاده مجدد، توسعه پذیری و راحتی را در اختیار ما قرار می دهد. این ویژگی ها برای شرکت هایی که به دنبال کاهش هزینه هستند و به جای فروش به اجاره سرویس های نرم افزار تاکید دارند، الزامی است[۹].
مدلهای سرویس
در مدل سرویس، انواع گوناگون ابر بیانگر قالبی هستند که زیر ساختها در آن قرار میگیرد. اکنون محدوده شبکه، مدیریت و مسئولیتها به پایان میرسد و امور مربوط به بخش سرویسدهندهی ابر آغاز میشود. با پیشرفت محاسبات ابری فروشندگان، ابرهایی را با سرویس های مختلف مرتبط به کار خود عرضه مینمایند. با سرویسهایی که عرضه میشوند مجموعه دیگری از تعاریف به نام مدل سرویس در محاسبات ابری مطرح میشود. برای مدلهای سرویس، نامگذاریهای بسیاری صورت گرفته که همگی به فرم زیر تعریف شده اند:
XaaS,or “<something>as a Service”
در حال حاضر در جهان سه نوع سرویس به صورت متداول شناخته می شود:
زیر ساخت به عنوان سرویس[۱۶]
زیر ساخت به عنوان سرویس یا IaaS ماشینهای مجازی، فضای ذخیرهسازی مجازی، زیر ساخت های مجازی و سایر سخت افزارهای کاربردی را به عنوان منابع برای مشتریان فراهم میآورد. سرویسدهندهی IaaS تمامی زیر ساختها را مدیریت مینماید و در حالی که مشتریان مسئول باقی جنبههای استقرار میباشند. از جمله سیستم عامل، برنامهها و تعاملات سیستم با کاربر و غیره.
در جدول ۲-۱ تعدادی از سرویس دهندگان شناخته شده در حوزه IaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول۲-۱ : سرویس دهندگان زیر ساخت به عنوان سرویس

برای دانلود متن کامل پایان نامه به سایت  fotka.ir  مراجعه نمایید.

سازمان سرویس/ ابزار توصیف لایه-سطح
آمازون Elastic Compute Cloud سرور مجازی IaaS- سرویس منبع مجازی
Dynamo سیستم ذخیره سازی مبتنی بر کلید-ارزش[۱۷] IaaS- سرویس زیرساخت پیشرفته
(۳-۲۲)

و بالاخره نشان دهنده نرخ تخریب اگزرژی به علت بازگشت ناپذیریهای داخل حجم کنترل میباشد که می تواند بوسیله رابطهی (۳-۲۰) و یا رابطهی برای یک حجم کنترل محاسبه گردد.
در شرایط پایدار رابطهی (۳-۲۰) بصورت زیر تبدیل خواهد شد:

برای دانلود متن کامل این فایل به سایت torsa.ir مراجعه نمایید.

(۳-۲۳)

۳-۲-۲-۳ تخریب اگزرژی
ناکارآمدیهای ترمودینامیکی واقعی در یک سیستم حرارتی به تخریب اگزرژی و اتلاف اگزرژی در آن سیستم مربوط میشود. تمامی فرآیندهای واقعی به علت وجود اثراتی همانند واکنش شیمیایی، انتقال حرارت بواسطهی اختلاف دمای محدود، اختلاط مواد با ترکیبات و حالتهای مختلف، انبساط آزاد و اصطکاک، فرآیندهایی بازگشت ناپذیر هستند. یک تحلیل اگزرژی اجزایی از سیستم را که دارای بیشترین ناکارآمدی ترمودینامیکی هستند و نیز فرآیندهایی که مسبب آن میشوند مشخص مینماید.
بطور کلی ناکارآمدیها در یک جز سیستم در صورتی که باعث کاهش هزینه سرمایه گذاری کل سیستم و یا کاهش هزینهی سوخت در اجزای دیگر نشوند، باید از بین رفته و یا کاهش یابند.
تلاش برای کاهش مصرف منابع انرژی باید بر روی اجزایی متمرکز گردد که بیشترین پتانسیل را برای بهبود و اصلاح دارند. در حال حاضر و باتوجه به وضعیت پیشرفتهای تکنولوژیکی، بعضی از موارد تخریب و یا اتلاف اگزرژی در اجزای یک سیستم اجتناب ناپذیرند. برای مثال قسمت عمده تخریب اگزرژی در یک فرایند احتراق نمیتواند حذف شود و تنها قسمت کوچکی از آن را میتوان بوسیله پیش گرم کردن مواد اولیه احتراق و یا کاهش مقدار هوای اضافی کاهش داد.
در یک فرایند بهینهسازی ترمودینامیکی هدف کمینه سازی ناکارآمدیهاست در حالی که در بهینهسازی ترمواکونومیکی هدف تخمین مقادیری از ناکارآمدیهای ترمودینامیکی می باشد که از لحاظ هزینه بهینه باشند.
 
شکل ۳-۲: پروفیل دما و دمای متوسط ترمودینامیکی برای دو جریان که از یک مبدل حرارتی آدیاباتیک در فشار ثابت عبور میکنند
انتقال حرارت بواسطه یک اختلاف دمای محدود فرایندی بازگشت ناپذیر میباشد. شکل (۳-۲) پروفیل دما را برای دو جریان که از یک مبدل حرارتی آدیاباتیک عبور میکنند نشان میدهد.
برای محاسبهی تخریب اگزرژی بعلت انتقال حرارت از جریان گرم به جریان سرد میتوان از رابطهی زیر استفاده نمود:

(۳-۲۴)

که دمای متوسط ترمودینامیکی برای جریان گرم و جریان سرد به طریق زیر بدست میآیند:

(۳-۲۵)

(۳-۱۸)

در فرایندی که در طی آن حجم سیستم افزایش مییابد (V2>V1)، کار (V2>V1)pکه بر روی محیط انجام میگیرد برای استفاده در دسترس نمیباشد ولی هنگامی که دوباره سیستم به حجم اولیهاش (V1) باز میگردد این کار قابل بازیافت میباشد.
بخشی از اگزرژی که برای یک سیستم حرارتی واقعی تامین میشود به علت بازگشت ناپذیریهای داخلی سیستم تخریب میگردد. مقدار تخریب اگزرژی ED برابر است با حاصلضرب میزان تولید آنتروپی، Sgen ، در داخل سیستم و در دمای محیط T0:

برای دانلود متن کامل پایان نامه به سایت  jemo.ir  مراجعه نمایید.

(۳-۱۹)

بنابراین تخریب اگزرژی هم میتواند از طریق تولید آنتروپی و با بکار بردن بالانس آنتروپی محاسبه گردد و یا مستقیماً از بالانس اگزرژی محاسبه میشود. در یک فرایند ایده آل مقدار ED برابر صفر خواهد بود.رابطهی (۳-۱۹) به تئوری گوی- استودلا معروف است.
۳-۲-۲-۲ بالانس اگزرژی برای حجم کنترل
انتقال اگزرژی از مرزهای یک حجم کنترل میتواند بواسطه جریانهای مواد و یا انتقال انرژی از طریق کار یا حرارت صورت گیرد. شکل کلی بالانس اگزرژی برای یک حجم کنترل که دارای چندین جریان ورودی و خروجی باشد بصورت زیر خواهد بود:

(۳-۲۰)

که در رابطهی فوق و نرخ انتقال اگزرژی کلی در ورودیها و خروجیهای حجم کنترل میباشد. ترم نشان دهندهی نرخ انتقال حرارت بر روی مرزهای حجم کنترل و تحت دمای میباشد. نرخ انتقال اگزرژی مرتبط با آن ، عبارت است از:

(۳-۲۱)

نرخ انتقال اگزرژی مربوط است به نرخ انتقال انرژی بواسطه کار و کار جریان و بصورت زیر محاسبه میگردد:

پژوهش – بهینه سازی ترمواکونومیک و اگزرژو اکونومیک بویلربازیاب حرارت سیکل ترکیبی و سیستم تولید …

شکل۱-۳: طبقه بندی بویلرهای بازیاب حرارت
بویلرهای بازیاب حرارت براساس کاربردهای مختلفی که دارند طبقهبندی میشوند. در شکل (۱-۳) نمونهای از طبقه بندی آنها آورده شده است.
در ادامه طبقهبندیهای انجام شده بر اساس گردش سیال عامل، سیستم آتشزایی و سطوح فشار که مهمترین مشخصهی طبقهبندی میباشد مورد بررسی قرار میگیرد.
۱-۲-۵ طبقه بندی انواع بویلرها بر اساس چگونگی گردش سیال عامل
۱-۲-۵-۱ سیستم گردش طبیعی
دارای لولههای عمودی است و جریان داغ گازهای عبوری از آنها افقی میباشد. در این سیستم، اختلاف دانسیته بین سیال سرد در لولههای پایین برنده با مخلوط آب و بخار در لولههای بالابرنده، موجب ایجاد نیروی رانش شده و سیال را در مدار چرخشی خود به حرکت در میآورد.
 
شکل۱-۴: بویلر بازیاب حرارت با انواع سیستم گردش آب a) گردش طبیعی b)گردش اجباری c) یک بار گذر
۱-۲-۵-۲ سیستم گردش اجباری
دراین سیستم لولههای حامل سیال عامل، افقی بوده و جریان گازهای عبوری از لولهها، عمودی است. در سیستم گردش اجباری نیروی رانش سایل از لوله های افقی مولد بخار، توسط پمپ تولید میشود.
۱-۲-۵-۳ بویلرهای یکبار گذر (فوق بحرانی)(Once Through Boiler):
بویلرهای بدون درام که دارای فشار فوق بحرانی میباشند به بویلرهای بنسون معروفند. در این نوع بویلر طراحی مجموعه محفظهی احتراق و لولههای دیوارهای به نحوی است که کلیهی آب تغذیه کنندهی موجود در لولههای دیوارهای پس از طی محفظهی احتراق و لولههای دیوارهای به بخار تبدیل شده و مستقیماً به سمت مافوقگرمکنها هدایت میگردند، لذا این بویلرها بدون درام هستند. از آنجاییکه بویلرهای بنسون دارای فشار بالایی هستند، تکنولوژی پیشرفتهای برای ساخت آنها مورد نیاز است، ولی به علت عدم وجود درام، وزن کمتری نسبت به بویلرهای زیر فشار بحرانی (درامدار) دارند. در بویلرهای بنسون حجم مشخصی از آب تغذیه با یکبار گردش در بویلر باید به بخار تبدیل شود. به عبارت دیگر عدد سیرکولاسیون، یک میباشد. ولی از آنجا که این بویلرها بالای فشار بحرانی کار می کنند، برای افزایش طول لولههای دیوارهای، بر خلاف بویلرهای درام دار لولهها را بهصورت مورب در روی دیوارهها طراحی میکنند تا ارتفاع بویلر کاهش یابد. همچنین ضخامت لولههای دیواره‌ای به علت بالا بودن فشار، بیشتر از ضخامت لولههای بویلرهای درامدار است. در ابتدای راهاندازی بویلرهای بنسون برای جداسازی آب و بخار از هم از سیکلون استفاده میکنند که با استفاده از خاصیت گریز از مرکز، آب و بخار را از هم جدا میکند و در حالت کارکرد دائم بویلر, از مدار خارج میگردند. همچنین به علت پایین بودن عدد سیرکولاسیون کنترل آنها نسبت به بویلرهای درامدار دشوارتر است و به دلیل نداشتن درام در شرایط اضطراری ذخیره آب و بخار نخواهند داشت.
۱-۲-۶ طبقه بندی بویلرهای سیکل ترکیبی بر اساس سیستم آتشزایی
بر این اساس دو نوع بویلر بازیاب حرارت میتواند وجود داشته باشد :
۱-۲-۶-۱ بویلر بازیاب حرارت بدون احتراق اضافی
در این نوع ، دود خروجی از اگزوز توربین گاز که حجم بالا و دمای زیادی (دمای گاز خروجی در بار اسمی در حدود ۵۰۰ درجه سانتیگراد است) دارد به بویلر بازیاب حرارت هدایت میشود و به جای مشعل و سوخت در واحدهای بخاری، جهت تولید حرارت به کار می رود. بخار تولید شده نیز توربین بخار را به چرخش در می آورد. این امر باعث بالا رفتن راندمان مجموعه نیروگاهی می گردد، ضمن آنکه هزینههای بهره برداری به ازای هر کیلووات تا حد قابل ملاحظهای کاهش پیدا میکند. این مجموعه برای تولید برق پایه استفاده میشود و کارآیی آن در صورتی که فقط برای تولید برق به کار رود تا بیش از ۵۰ درصد هم بالا می رود.
در مناطق سردسیر با بکارگیری توربین بخار با فشار خروجی زیاد (Back pressure) به جای کندانسور و برجخنککن در تأمین آب گرم و بخار مصرفی گرمایش مناطق شهری و صنعتی نیز استفاده میشود که در این صورت راندمان تا ۸۰ درصد هم افزایش می یابد.
در شکل زیر نمونهای از شمای حرارتی نیروگاههای سیکل ترکیبی بدون مشعل آورده شده است:
 
شکل ۱-۵: شمای حرارتی یک نیروگاه سیکل ترکیبی بدون مشعل
۱-۲-۶-۲ بویلرهای بازیاب حرارت با احتراق اضافی
در نیروگاههای سیکل ترکیبی بدون مشعل، کارکرد بخش بخار وابستگی کامل به کارکرد توربین گاز دارد. در مواردی که نیاز به کارکرد دائمی بخش بخار وجود دارد با تعبیهی مشعل در بویلر، میتوان به هنگام کاهش قدرت توربین گاز به علت تغییر شرایط محیطی کاهش قدرت توربین بخار را به حداقل رساند و حتی به گونهای طراحی را انجام داد که در صورت توقف بخش گاز کارکرد قسمت بخار با اشکال مواجه نگردد، عملکرد مستقل این دو بخش تأمین میشود و بدین ترتیب، این نوع نیروگاهها شکل گرفتهاند.
این نوع سیکل ترکیبی عموماً به منظور بالا بردن قدرت و جلوگیری از نوسانات قدرت توربین بخار با تغییر بار توربینگاز به کار گرفته می شود. امکان کارکرد واحد بخار در نقطه کار مناسبتر با تعبیه مشعل ساده، به کارگیری سوخت مناسب و استفاده از گاز داغ خروجی توربینگاز به عنوان هوای دم عملی است. به کارگیری این نوع واحدها در مواردی که علاوه بر تامین انرژی الکتریکی، تأمین آب مصرفی و یا بخار مورد نیاز واحدهای صنعتی نیز مد نظر باشد، عمومیت دارد .
شکل زیر نمونه ای از شمای حرارتی نیروگاههای سیکل ترکیبی با مشعل را نمایش میدهد :
 
شکل ۱-۶: نمونهای از شمای حرارتی نیروگاههای سیکل ترکیبی با

برای دانلود متن کامل این پایان نامه به سایت  jemo.ir  مراجعه نمایید.

مشعل
بویلرهای بازیاب حرارت با نصب سیستم احتراق اضافی به دو صورت زیر میباشد:
۱-۲-۶-۲-۱ بویلرهای با مشعل اضافی محدود شده
این نوع بویلرها مشابه واحدهای بدون احتراق اضافی میباشند. در این نوع از بویلرها، حدکثر دمای گازهای خروجی از توربین باید بین ۹۰۰-۸۰۰ درجه سلسیوس باشد. سوخت مورد استفاده در این بویلرها میتواند مازوت یا گاز باشد ولی در بویلرهای ساده و بدون خنککن، محفظهی احتراق با سوخت گاز مناسبتر است، زیرا هم انتقال حرارت تشعشعی کمتر و هم قابلیت اشتعال بیشتری دارند. انواع مختلفی از سوختها را میتوان در بویلرها مورد استفاده قرار داد که رایجترین نوع سوخت برای آن گاز متان یا گاز طبیعی است.
۱-۲-۶-۲-۲ استفاده از توربین گاز جهت پیش گرم کردن هوای دم بویلر
این نوع سیکل ترکیبی مشابهت زیادی با سیکل بخار معمولی دارد با این تفاوت که در نیروگاه بخاری ساده از سیستم پیشگرمکن هوا و فن تأمین کننده هوای دم که خود مصرف کننده انرژی است استفاده میگردد. لیکن در این گونه سیکل ترکیبی، سیستم گرمایش و فن دمنده هوای احتراق کوره را توربین گاز بر عهده گرفته است. بدین ترتیب راندمان واحد بخاری ساده با جانشین کردن سیستم تأمین هوای دم با توربین گاز، بهطور نسبی بهبود مییابد.
معمولاً این نوع سیکل ترکیبی در نیروگاههای بخاری بزرگ که سوخت آن ذغال سنگ و یا مازوت میباشد، به کار میرود. قدرت تولیدی توربین گاز در این نوع سیکل حداکثر ۲۰ درصد قدرت تولید کل نیروگاه است.
۱-۲-۶-۲-۳ بویلرهای با حداکثر احتراق اضافی
در نیروگاههایی که از این نوع بویلرها استفاده میکنند اساس کار سیکل بخار میباشد و توربین گاز برای بهبود راندمان کلی نیروگاه به کار میرود. پروسه بخار تقریباً مشابه نیروگاههای بخاری معمولی بوده و در بیشتر موارد نیروگاه شامل باز گرمکن و چند گرمکن آب تغذیه میباشد.
۱- ۲-۷ طبقه بندی بویلرهای بازیاب حرارت بر اساس سطوح فشار بخار
اساس کار نیروگاههای سیکل ترکیبی، به بازیافت انرژی موجود در جریان گازهای داغ خروجی از توربین گاز و تولید بخار در بویلر بازیاب حرارت بین واحدهای گاز و بخار در بویلر بازیاب حرارت صورت میگیرد لذا سطوح مختلف فشار به کار گرفته شده در ساختار آنها، مهمترین نقش را در میزان بازیافت انرژی ایفا میکنند.
۱-۲-۷-۱ بویلرهای بازیاب حرارت تک فشاره
سادهترین نوع بویلرهای بازیاب حرارت، انواع تک فشار آنها میباشد که درسیکلهای ترکیبی مورد استفاده قرار میگیرد. سیکلهای تک فشار در سادهترین حالت خود، شامل یک یا چند توربین گاز، یک بویلر بازیاب حرارت، یک توربین بخار تحت کندانس و یک کندانسور میباشد.
شکل۱-۸:پرفیل دمایی بویلر بازیاب تک فشاره در حضور هوازدا
شکل۱-۷:شماتیک بویلر بازیاب تک فشاره در حضور هوازدا