دانلود پایان نامه ارشد:سنتز و شناسایی کمپلکس Ho-POSS با کاربرد در پوشش‌دهی در ابزار پزشکی

دانلود پایان نامه

متن کامل پایان نامه مقطع کارشناسی ارشد رشته :علوم و تكنولوژی پلیمر

عنوان : سنتز و شناسایی کمپلکس  Ho-POSS با کاربرد در پوشش‌دهی در ابزار پزشکی

پژوهشگاه پلیمرو پتروشیمی ایران

پ‍ژوهشكده علوم


سنتز و شناسایی کمپلکس  Ho-POSS با کاربرد در پوشش‌دهی در ابزار پزشکی

پایان نامه كارشناسی ارشد رشته علوم و تكنولوژی پلیمر


اساتید راهنما:

دكتر پروین شکرالهی

دکتر مژگان زندی

استاد مشاور:

دکتر محمد ایمانی

 

1391

 

 

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست

فصل اول : مقدمه 1

1-1      شیمی درمانی 1

1-2      رادیوتراپی 3

1-3      مزایا و معایب رادیودرمانی و براکی تراپی 5

1-4      پرتوزایی و سازو کار تبدیل عناصر رادیواکتیو 6

1-5      منابع انرژی مورد استفاده در براکی تراپی 8

1-6      براکی تراپی با کمپلکس هلمیوم 9

1-7      ضرورت انتخاب لیگاند مناسب برای فلز هلمیوم در کاربرد براکی تراپی 10

1-7-1  پلی هدرال الیگومریک سیلسسکوی اكسان (POSS) 10

1-8      نانوکامپوزیتهای POSS 12

1-9      شیمی فلزات لانتانید 14

1-10  کمپلکسهایی با لیگاند POSS 17

فصل دوم : مروری بر مطالعات انجام شده 18

2-1      شیمی سیلسسکویی اکسان 18

2-2      سنتز کمپلکس Ho-POSS  با استفاده از الکوکسید، آمینی و آلکیل فلزی (روش اول) 22

2-3      سنتز کمپلکس فلز-POSS  در حضور ترکیب آمینی 25

2-4      واکنشهای جانبی در روش استفاده از آمین برای کمپلکس فلز-POSS 28

2-5      سنتز کمپلکس فلز- POSS با استفاده از لیتیم بیس( تری متیل سایلیل آمید) (روش سوم ) 28

2-6      کمپلکسفلزات گروه f با POSS 30

فصل سوم : بخش تجربی 36

3-1      مواد 36

3-2      سنتز POSS-Ho 37

3-2-1         سنتز کمپلکس 1 با استفاده از آلکوکسید فلزی 38

3-2-2         سنتز کمپلکس2 (استفاده از نمک کلرید هلمیوم در حضور باز لویس آمینی) 39

3-2-3         سنتز کمپلکس3 (استفاده از هلمیوم کلراید در حضور لیتیم تری متیل سایلیل آمید) 39

3-3            سنتز پلی یورتان 40

3-4             شناسایی ها 40

3-4-1         سانتریفوژ 40

3-4-2         گرماسنجی روبشی تفاضلی (DSC) 40

3-4-3         خشک کن انجمادی 41

3-4-4         میکروسکوپی نوری 41

3-4-5         طیف بینی مادون قرمز تبدیل فوریه (FTIR) 41

3-4-6         تجزیه گرما وزن سنجی(TGA) 42

3-4-5         بازتاب ضعیف شده کل – آزمون طیف سنجی زیر قرمز سطح (ATR-FTIR) 42

3-4-6         EDX 43

3-4-7         NMR 43

3-4-8         طیف سنجی نور فرابنفش(UV) 43

3-4-9         کروماتوگرافی لایه نازک 44

3-4-10       طیف سنجی فلورسانس 44

3-4-11       فتولومینسانس(PL) 45

3-5            بررسی زیست سازگاری 45

فصل چهارم : نتایج و بحث 46

4-1          آماده سازی مواد اولیه 46

4-1-1         طیف بینی  FTIR ازPOSS خالص 46

4-1-2         خشک کردن هلمیوم نیترات 47

4-1-3         ATR 53

4-2              سنتز کمپلکس 54

4-2-1         نتایج سنتز کمپلکس به روش اول (کمپلکس1) 55

4-3            روشهای خالص سازی کمپلکس POSS-Ho 56

4-3-1         EDX 57

4-4            آنالیز کمپلکس 1 58

4-4-1         آنالیز کمپلکس 1 توسط FTIR 58

4-4-1         شناسایی کمپلکس 1 توسط طیف سنجی رزونانس مغناطیسی هسته (NMR) 61

4-5            کمپلکس سنتز شده در حضور آمین (کمپلکس2) 73

4-5-1         شناسایی کمپلکس 2 با روش FTIR 73

4-6             شناسایی کمپلکس3 74

4-6-1         شناسایی کمپلکس 3 به روش FTIR 76

4-6-2         EDX مربوط به کمپلکس 3 79

4-6-3         شناسایی کمپلکس 3 به روش طیف سنجیNMR 79

4-6-4         بررسی رفتار حرارتی کمپلکس با آزمون TGA 81

4-7            بررسی رفتار کمپلکس در محدودهیUV-Vis 83

4-7-1         کروماتوگرافی لایه نازک (TLC) 84

4-7-2         طیف سنجی UV 85

4-7-3         طیف سنجی فلورسانس (فلوریمتری ) 87

4-7-4         فتولومینسانس 89

4-8      زیست سازگاری کمپلکس 92

4-9      بررسی امکان تشکیل مایسل های POSS در حلال های مورد استفاده در واکنش 93

4-10    شناسایی پلی یورتان با FTIR 94

4-10-1       TGA پلی یورتان 97

4-10-2       بررسی خواص مکانیکی و حرارتی پلی یورتان به روش DSC 98

4-10-3       بررسی تاثیر استفاده از POSS برای پخش هلمیوم در بستر پلی‌یورتان 99

فصل پنجم: نتیجه‌گیری 100

فهرست اشكال

شکل1-1. نمونه­ای از دستگاه رادیو تراپی……………………………………………………………………………..3

شکل1- 2 کاتترهای مورد استفاده در براکی تراپی …………………………………………………………………5

شکل1-3 . ساختار POSS با گروه­های R متصل…………………………………………….. ……………………11

شکل1-4 ترکیب ویژگی­های مواد معدنی با پلیمرها برای حصول خواص مطلوب……………………….12

شکل1-5  انواع روش­های وارد کردن POSS در داخل بستر پلیمر……………………………………………13

شکل1-6  ساختار­های مختلف POSS…………………………………………………………………………………14

شکل1-7 آزمایشگاه مدرن بررسی شیمی لانتانید ها و عناصر واسطه………………………………………….15

شکل 1-8 روند تغییرات شعاع اتمی ,نقطه جوش و آنتالپی تبخیر عناصر لانتانیدی………………………..15

شکل 1-9 بررسی پایداری کمپلکس چند لیگاند مختلف برای فلزات لانتانیدی…………………………..17

شکل 2-1 : تمام عناصر واکنش داده شده با POSS با قفس ناقص……………………………………………..18

شکل 2-2 روش­های  مختلف سنتز کمپلکس فلز-POSS……………………………………………………….19

شکل2-3: مثال­هایی از سیلسسکویی­اکسان با گروه های سیلانول…………………………………………….20

شکل2-.4 نمایش شماتیک اتصال­ گروههای سیلانول-فلز در قفس POSS  ………………………………21

شکل2-5:تشکیل اوربیتال­های مولکولی در تشکیل کمپلکس فلز- POSS…………………………………21

شکل ‎1‑6: واکنش اپوکسیداسیون………………………………………………………………………………………22

شکل2-7 : کمپلکس POSS Mg – ،……………………………………………………………………………………23

شکل ‎1‑8 : شماتیکی از سنتز کمپلکس   Zr-POSS……………………………………………………………….24

شکل ‎12-9: کمپلکس W-POSS سنتز شده توسط فهر……………………………………………………………24

شکل2-10 : کمپلکس­های Ti-POSS با استفاده از مشتق الکوکسید تیتانیم………………………………..25

شکل2-11: نمونه­ای ازسنتز کمپلکس­آلومنیوم  با لیگاند POSS در حضور تری­اتیلن آمین………………………..25

شکل 2-12: شمایی از سنتز کمپلکس   V-POSS در حضور تری اتیل آمین………………………………………26

شکل ‎1‑13: شماتیک سنتز کمپلکس Zr-POSS…………………………………………………………………..26

شکل2-14 : تشکیل کمپلکس Fe-POSS در حضور آمین……………………………………………………….27

شکل2-15: سنتز کمپلکس های  آلومنیوم و مس  با POSS……………………………………………………..27

شکل ‎1‑16:  واکنش جانبی که در واکنش تشکیل متالاسیلسسکویی­اکسان انجام می­شود……………28

شکل 2-17 : سنتز کمپلکس­ منگنز – POSS توسط ادلمان………………………………………………………29

شکل 2-18: تهیه­ی کمپلکس Ti- POSS با روش اول  در حضور الکل و آمین………………………….30

شکل 2-19 : کمپلکس Yb-POSS    ……………………………………………………………………………………31

شکل 2-20 : تشکیل کمپلکس N-POSS در حضور ایزوپروپانول……………………………………………32

شکل 2-21 : سنتز کمپلکس تعدادی از فلزات که با استفاده از حد واسط Li-POSS  ………………….33

شکل 2-22 : شمایی از تشکیل کمپلکس Er-POSS    …………………………………………………………….34

شکل2-23 : تهیه­ی کمپلکس Nd, Pr, Er و Ho  با لیگاند دی سیلوکسان دی ال………………………..34

شکل4-1   طیف FTIR  لیگاند  POSSتری­سیلانولی…………………………………………………………………………..47

شکل4-2:ترموگرام TGA نمک هلمیوم کلرید شش آبه…………………………………………………………49

شکل4-3 نمودار TGA مربوط به HoNit اولیه بدون اعمال ایزوترم گرمایشی در فرآیند تست TGA…………50

شکل4-4 : منحنی TGA مربوط به نمونه­های HoNit    …………………………………………………………….51

شکل 4-5 منحنی­های TGA مربوط به نمونه­های “خشک شده”……………………………………………….52

شکل 4-6 :طیف­های ATR-FTIR مربوط به هلمیوم نیترات    ………………………………………………..54

شکل 4-7 : ساختارHo6(C3H7O)17(NO3)…………………………………………………………………………………………..55

شکل 4-8 :شماتیک لیگاند POSS تری ال (1) و کمپلکس سنتز شده (2)………………………………………………………56

شکل 4-9 : نتایج EDX از باقی مانده مرحله­ی انجام واکنش هلمیوم نیترات با سدیم پروپانوات…………………………….58

شکل4-10: طیف FTIR…………………………………………………………………………………………………………………………60

شکل4-11: طیف EDX کمپلکس POSS-Ho حاصل از سنتز کمپلکس1……………………………………………………….61

شکل4-12 :نمایش شماتیک لیگاند POSS تری­ال (1) و پیش بینی کمپلکس2……………………………………62

شکل4-13: طیف H-NMR لیگاند POSS………………………………………………………………………………………………………….62

شکل 4-14: طیف H-NMR کمپلکس Ho-POSS……………………………………………………………………………………………63

شکل 4-15 :طیف C-NMR لیگاند POSS تری­ال…………………………………………………………………………………………..65

شکل 4-16: طیف C-NMR کمپلکس Ho-POSS ………………………………………………………………………………..65

شکل 4-17: طیف Si-NMR لیگاند POSS تری­ال. ……………………………………………………………………………….66

شکل 4-18: طیف Si-NMR کمپلکس Ho-POSS. ………………………………………………………………………………………66

شکل4‑19:تخمین نرم­افزار ChemDraw برای H-NMR مربوط به POSS خالص……………………………..68

شکل 4-20:تخمین نرم­افزار Chem Draw برای C-NMR مربوط به POSS خالص…………………………..68

شکل 4‑21:تخمین نرم­افزار ChemDraw برای H-NMR …………………………………………………………………………..69

شکل 4‑22:تخمین نرم­افزار ChemDraw برای C-NMR …………………………………………………………………………….70

شکل 4‑23:تخمین نرم­افزار ChemDraw برای H-NMR ………………………………………………………………………………71

شکل 4‑24:تخمین نرم­افزار ChemDraw برای C-NMR …………………………………………………………………………..72

شکل 4-26: طیف FTIR مربوط به کمپلکس 2……………………………………………………………………………………………74

شکل 4-27: ساختار شیمیایی لیتیم بیس متیل سایلیل آمید……………………………………………………………………………………….74

شکل 4-28: تشکیل دیمر POSS در حضور لیتیم بیس (تری متیل سایلیل ) آمید………………………………….75

شکل 4-29: نمایش شماتیک واکنش POSS با HoCl3………………………………………………………………………………..75

شکل 4-30:FTIRمربوط به حد واسط واکنش POSS با لیتیم بیس(تری متیل سایلیل )آمید …………………………………..77

شکل 4-31 : EDX کمپلکس 3…………………………………………………………………………………………………………………….79

شکل 4-32 طیف NMR مربوط به کمپلکس Ho-POSS به روش استفاده از لیتیم بیس (تری متیل سایلیل آمید)…….80

شکل 4-33: ترموگرام مربوط به POSS……………………………………………………………………………………………………………….82

شکل 4- 34 ترموگرام مربوط به کمپلکس Ho-POSS………………………………………………………………………………………..83

شکل 4-35 میزان جذب درطیف بینی UV برای چهار غلظت مشخص از کمپلکس 3……………………………………………..86

شکل4-36 : طیف طیف سنجی فلورسانس هگزان…………………………………………………………………………………………………88

شکل4-37 : طیف طیف سنجی فلورسانس کمپلکس3…………………………………………………………………………………………..88

شکل 4-38 طیف فتولومینسانس لیزر مورد استفاده (بالا) و POSS (پایین) …………………………………………………………91

شکل 4-39 طیف فتولومینسانس کمپلکس POSS-Ho………………………………………………………………………………..91

شکل 4-40: :ترازهای انرژی Ho+3  ،]95[……………………………………………………………………………………………………92

شکل 4-41 :تصاویر کشت سلولی ……………………………………………………………………………………………………………………93

شکل4‑42: ساختار­های اسفرولیتی POSS حاصل از محلول POSS ……………………………………………………..94

شکل 4-43: FTIR پلی­کاپرولاکتون 1250(سایت Aldrich) ……………………………………………………………………………..95

شکل 4-44 : واکنش ایزوسیانات با پلی‌کاپرولاکتون و تشکیل پیش­پلیمر……………………………………………..95

شکل 4-45: FTIRمربوط به سننز پلی یورتان……………………………………………………………………………………………97

شکل 4-46: ترموگرام TGA حاصل از پلی­یورتان- اوره با زنجیره افزاینده بوتان دی­آمین………………………………………98

شکل 4-47 ترموگرام DSC……………………………………………………………………………………………………………………….99

شکل4–48: تصویر   نقشه‌ی EDX پخش عنصر سیلسیم…………………………………………………………………………..99

فهرست جداول

جدول 1-1 شعاع اتمی و شعاع یونی لانتانیدها……………………………………………………………………………………………………16

جدول1-2 ویژگی­های لایه ظرفیت عناصر واسط……………………………………………………………………………………………….16

جدول 4-1 : طول موج ­های شاخص در طیف FTIR حاصل از POSS خالص…………………………………………………….47

جدول4-2 : کاهش وزن هلمیوم نیترات در آزمون TGAدر دماهای مختلف………………………………………………………….53

جدول 4-3 : نتیجه آنالیز EDX (واکنش هلمیوم نیترات با سدیم پروپانوات) ……………………………………………………………58

جدول4-4: نتایج EDX روش اول پیشنهادی فهر سنتز شده است. ………………………………………………………………………..61

جدول 4-5: جذب­های مشاهده شده در ناحیه طیفی FTIR…………………………………………………………………………………..78

جدول 4-6:  نتایج EDX مربوط به کمپلکس 3………………………………………………………………………………………………….79

جدول 4-7 : نتایج حاصل از کابینت UV………………………………………………………………………………………………………….84

جدول4-8: نتایج بدست آمده از طیف سنجی UV …………………………………………………………………………………………….85

جدول4-9 نتایج طیف سنجی فلورسانس …………………………………………………………………………………………………………89

 

چکیده :

امروزه سرطان یکی از دغدغه­هایمهم دنیای پزشکی است که  تا کنون درمان قطعی برای آن یافت نشده . پرتودرمانی از روش­هایی است که برای کنترل و کاهش عوارض سرطان مورد استفاده قرار می­گیرد. براکی تراپی یکی از این روش­های پرتودرمانی است که در آن منبع پرتو با روش­های متعددی در نزدیکی بافت سرطانی قرار داده می­شود. معمولا فلزاتی مثل  ایتریم، رنیم ، هلمیوم و نافلزاتی مانند فسفر پس  از فعال شدن با پرتو نوترونی به عنوان منبع پرتو برای این کاربرد مورد استفاده قرار می­گیرد. در سال­های اخیر ایزوتوپ رادیواکتیو هلمیوم به­دلیل نیمه عمر کوتاه و دارا بودن ویژگی­های مورد نیاز برای براکی­تراپی از جمله میزان بهینه انرژی ساطع شده توسط پرتو، برای کاربرد براکی­تراپی بسیارمورد توجه قرار گرفته است. یکی از این گونه تکنیک­ها، قرار دادن منبع پرتو در یك بستر پلیمری است (تهیه كامپوزیت پلیمری). با این حال، معمولا فلز هلمیوم (به عنوان منبع تابش)  به ­شکل اکسید فلز ، نمک­های فلز یا حتی به ­شکل پودر فلز  مورد استفاده قرار می­گیرد. این ترکیبات معدنی بدلیل اختلاف انرژی سطحی نسبتا زیاد با بسترهای پلیمری ، به خوبی در آن  توزیع نمی شوند . به همین دلیل، تلاش شد تا با سنتز یك کمپلکس حجیم از فلز هلمیوم با یك لیگاند مناسب بر این مشکل غلبه شود. انتظار می رود انتخاب لیگاند مناسب دارای استخلاف­های آلی ، به بهبود پخش و نوعی گیر افتادن كمپلكس  حاوی فلز در بستر پلیمر کمک ­کند . در این پژوهش، از  لیگاند پلی­هدرال الیگومریک سیلسسکویی­اکسان – تری ال  (POSS) با ساختار قفس ناقص برای تشكیل كمپلكس با فلز هلمیوم، استفاده شد.لیگاند حجیم  POSS با فرمول عمومی Rn Sin O1.5n ، قفسی سیلیکونی است و گروه­های  آلی R  متصل به سیلسیم در گوشه­های قفس سیلیکونی به این لیگاند خاصیت هیبریدی آلی- معدنی می­بخشد. دارا بودن این ویژگی به توزیع بهتر کمپلکس در بستر پلیمر کمک می‌کند. بعلاوه، این لیگاند با زیست سازگاری شناخته شده وقفس سیلیكونی می­تواند  بطور همزمان زیست­سازگاری سیستم بركی تراپی و مقاومت آن  در برابر اشعه را افزایش دهد.تا کنون کمپلکس شدن POSS با فلزات مختلف جدول تناوبی ( فلزات گروه­های اصلی ، فلزات واسطه و فلزات نادر )  گزارش شده است. با این حال، گزارشی درباره سنتزكمپلكس آن با فلز هلمیوم در دست نیست. در این پژوهش، از سه روش شناخته شده برای سنتز کمپلکس Ho-POSS استفاده شده  است. در روش اول برای سنتز کمپلکس  Ho-POSS، با استفاده از سدیم پروپانوات و نمک هلمیوم نیترات، کمپلکس هلمیوم پروپانوات سنتز شده و در ادامه با اضافه شدن POSS  جابجایی لیگاند انجام شد . نتایج FTIR , EDX انجام سنتز را تایید کرد.  با این حال نتایج NMR نشان می­داد که POSS با تمام ظرفیت خود وارد واکنش نشده است. در روش دوم،  سنتز کمپلکس Ho-POSS  در حضور تری اتیل آمین(به عنوان باز لوییس) و در حلال THF انجام گرفت و نتایج طیف سنجی FTIR  نشان داد که این روش برای سنتز Ho-POSS مناسب نیست. در روش سوم برای سنتز کمپلکس Ho-POSS ، از لیتیم بیس( تری متیل سایلیل آمید) استفاده شد. نتایج طیف سنجی FTIR محصول، درستی سنتز این حدواسط را تایید کرد. برای شناسایی کمپلکس نهایی از FTIR ،NMR  و EDX استفاده شد و رفتار حرارتی آن­ با استفاده از روش TGA مطالعه شد. نتایج آمده از آزمون­های ذکر شده، تشکیل کمپلکس را تایید کرد. با استفاده از دستگاه­های طیف­سنجی فلورسانس و فتولومینسانس قابلیت نشر کمپلکس با تهییج طول موج نور UV بیشتر مورد بررسی قرار گرفت. نتایج حاصل از طیف­سنجی فلورسانس با نور تهییج کننده nm330 ، نشری  را در طول موج nm470 نشان داد. این نشر در دستگاه فتولومینسانس دقیقا در طول موجnm 470  تایید شد. در طیف سنجی UV-Vis جابجایی قرمز از طول موجnm 221 به nm269  مشاهده شد. این تغییرات، ناشی از تغییر در ساختار POSS و تشکیل ساختار جدید است. در نهایت می­توان گفت این روش سنتز، بازده ی بالاتری  نسبت به دو سنتز قبل در اختیار قرار داد.درنهایت، كامپوزیت کمپلکس (wt% 5 ) با پلی یورتان بر پایه پلی كاپرولاكتون،  هگزا متیلن دی ایزوسیانات و 1و4-بوتان دی ال تهیه و برای آزمون سمیت سلولی ارسال شد. نتیجه آزمون نشان داد كه این كمپلكس سمیت سلولی نشان نمی دهد.

فصل اول

مقدمه

روش­های درمان سرطان عمدتا به سه دسته جراحی،شیمی درمانی و رادیوتراپی تقسیم می­شوند.روش­های نام­برده می­توانند به طور مستقل یا ترکیبی مورد استفاده قرارگیرند. روش­های رادیوتراپی[1] خود به دو شاخه رادیو تراپی از راه دور[2]و رادیوتراپی از راه نزدیک[3]تقسیم می­شود.

 شیمی درمانی

شیمی درمانی[4]، روشی عمومی برای درمان سرطان است و برای از بین بردن یاخته‌های سرطانی مورد استفاده قرار می‌گیرد. داروهای شیمی درمانی برای پیشگیری از شدت یافتن بیماری و در مواردی که سرطان در بدن پخش شده تجویز می‌شوند. عوارض جانبی شیمی درمانی عبارتند از حالت تهوع و استفراغ، ریزش موی سر و ابرو، کاهش تعداد گویچه‌های سفید خون، ضعف سیستم ایمنی بدن، عفونت، احساس درد، خشکی دهان، پوکی استخوان، کم‌خونی‌و کاهش تعداد گویچه‌های قرمز خون که ممکن است سبب خستگی، سرگیجه و احساس سرما در بیمار شود. اسهال و یبوست و سفتی و خشکی مفاصل از دیگر عوارض جانبی شیمی درمانی است.

تعداد صفحه : 131

قیمت : 14700تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        ****       [email protected]

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  *** ***

  • 1